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ABSTRACT
Deep learning on point clouds has received increased attention thanks to its wide applications in AR/VR and
autonomous driving. These applications require low latency and high accuracy to provide real-time user experience
and ensure user safety. Unlike conventional dense workloads, the sparse and irregular nature of point clouds poses
severe challenges to running sparse CNNs efficiently on the general-purpose hardware. Furthermore, existing
sparse acceleration techniques for 2D images do not translate to 3D point clouds. In this paper, we introduce
TorchSparse, a high-performance point cloud inference engine that accelerates the sparse convolution computation
on GPUs. TorchSparse directly optimizes the two bottlenecks of sparse convolution: irregular computation and
data movement. It applies adaptive matrix multiplication grouping to trade computation for better regularity,
achieving 1.4-1.5× speedup for matrix multiplication. It also optimizes the data movement by adopting vectorized,
quantized and fused locality-aware memory access, reducing the memory movement cost by 2.7×. Evaluated on
seven representative models across three benchmark datasets, TorchSparse achieves 1.6× and 1.5× measured
end-to-end speedup over the state-of-the-art MinkowskiEngine and SpConv, respectively.

1 INTRODUCTION

3D point cloud becomes increasingly accessible over the
past few years thanks to the widely available 3D sensors,
such as LiDAR scanners (on the self-driving vehicles and,
more recently, even the mobile phones) and depth cameras
(on the AR/VR headsets). Compared with 2D RGB images,
3D point clouds provide much more accurate spatial/depth
information and are usually more robust to different lighting
conditions. Therefore, 3D point cloud processing becomes
the key component of many real-world AI applications: e.g.,
to understand the indoor scene layout for AR/VR, and to
parse the driveable regions for autonomous driving.

A 3D point cloud is an unordered set of 3D points. Unlike
2D image pixels, this data representation is highly sparse
and irregular. Researchers have explored to rasterize the 3D
data into dense volumetric representation (Qi et al., 2016)
or directly process it in the point cloud representation (Qi
et al., 2017b; Li et al., 2018). However, both of them are not
scalable to large indoor/outdoor scenes (Liu et al., 2019). Al-
ternatively, researchers have also investigated to flatten 3D
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Figure 1: Widely available 3D sensors (left) have enabled
more and more real-world AI applications to perceive the
world using 3D point clouds (middle). However, processing
3D point cloud requires sparse computation that is not fa-
vored by general-purpose hardware. TorchSparse reduces
the irregular computation and optimizes the data movement,
achieving 1.7× to 2× measured speedup (right).

point clouds into dense 2D representations using spherical
projection and bird’s-eye view (BEV) projection. However,
their accuracy is much lower due to the physical dimension
distortion and height information loss.

Recently, state-of-the-art 3D point cloud neural networks
tend to rely largely or fully on sparse convolutions (Graham
et al., 2018), making it an important workload for machine
learning system: all top 5 segmentation submissions on Se-
manticKITTI (Behley et al., 2019) are based on SparseConv,
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9 of top 10 submissions on nuScenes (Caesar et al., 2020)
and top 2 winning solutions on Waymo (Sun et al., 2020)
have exploited SparseConv-based detectors (Yin et al., 2021;
Ge et al., 2021). Given the wide applicability and dominat-
ing performance of SparseConv-based point cloud neural
networks, it is crucial to provide efficient system support for
sparse convolution on the general-purpose hardware.

Unlike conventional dense computation, sparse convolution
is not supported by existing inference libraries (such as Ten-
sorRT and TVM), which is why most industrial solutions
still prefer 2D projection-based models despite their lower
accuracy. It is urgent to better support the sparse workload,
which was not favored by modern high-parallelism hard-
ware. On the one hand, the sparse nature of point clouds
leads to irregular computation workloads: i.e., different ker-
nel offsets might correspond to drastically different numbers
of matched input/output pairs. Hence, existing sparse infer-
ence engines (Yan et al., 2018; Choy et al., 2019) usually
execute the matrix multiplication for each kernel offset sep-
arately, which cannot fully utilize the parallelism of modern
GPUs. On the other hand, neighboring points do not lie
contiguously in the sparse point cloud representation. Ex-
plicitly gathering input features and scattering output results
can be very expensive, taking up to 50% of the total runtime.
Due to the irregular computation workload and expensive
data movement cost, SparseConv-based neural networks
can hardly be run in real time: the latest sparse convolution
library can only run MinkowskiNet at 8FPS on an NVIDIA
GTX 1080Ti GPU, let alone other low-power edge devices.

In this paper, we introduce TorchSparse, a high-performance
inference engine tailored for sparse point cloud computation.
TorchSparse is optimized based upon two principles: (1)
improving the computation regularity and (2) reducing the
memory footprint. First, we propose the adaptive matrix
multiplication grouping to batch the computation workloads
from different kernel offsets together, trading #FLOPs for
regularity. Then, we adopt quantization and vectorized mem-
ory transactions to reduce memory movement. Finally, we
gather and scatter features in locality-aware memory access
order to maximize the data reduce. Evaluated on seven
models across three datasets, TorchSparse achieves 1.6×
and 1.5× speedup over state-of-the-art MinkowskiEngine
and SpConv, paving the way for deploying 3D point cloud
neural networks in real-world applications.

2 BACKGROUND

The point cloud can be formulated as an unordered set of
points paired with features: {(pj ,xj)}, where xj ∈ RC

is a C-dimensional feature vector for point pj ∈ ZD in
a D-dimensional space. For a convolution of kernel size
K, let W ∈ RKD×C in×Cout

be its weights and ∆D(K)
be its kernel offsets (e.g., ∆2(5) = {−2,−1, 0, 1, 2}2 and

∆3(3) = {−1, 0, 1}3). The weightsW can be broken down
into KD matrices of shape C in × Cout, denoted asWδ for
δ ∈ ∆D(K). With these notations, the convolution with
stride s can be represented as

xout
k =

∑
δ∈∆D(K)

∑
j

1[pj = sqk + δ] (xin
j ·Wδ), (1)

where pj ∈ P in, qk ∈ P out, and 1[·] is the binary indicator.

For dense convolution (Figure 3a), each nonzero input is
multiplied with all nonzero weights, leading to rapidly grow-
ing nonzeros (P in ⊂ P out). On the other hand, the compu-
tation of sparse convolution (Figure 3b) is determined by
mapsM = {(pj , qk,Wδ)} in Equation 1 (also written as
{(pj , qk,Wn)}, where n is the weight index) and keeps the
sparsity pattern unchanged (P in = P out). It iterates over all
maps and performs xout

k = xout
k + xin

j ·Wδ .

2.1 Mapping Operations

Mapping is a step to construct the input-output mapsM =
{(pj , qk,Wδ)} for sparse convolution. Here, j is the index
of input point p in P in, k is the index of output point q
in P out, and Wδ is the weight matrix for kernel offset δ.
Generating maps typically requires two steps: calculating
the output coordinates P out, and searching mapsM. These
operations only take coordinates as input.

2.1.1 Output Coordinates Calculation

When the convolution stride is 1, the output coordinates are
exactly the same as the input coordinates, i.e., P out = P in.

When the convolution stride is larger than 1, the nonzero
input coordinates will first be dilated for each kernel offset
(i.e., p−δ). After that, only these points on the strided grids
within boundaries will become outputs q, where s·q = p−δ.
Take the input coordinate (3, 5) as an example (with stride
of 2). For offset δ = (1, 1), the output coordinate will be
((3, 5)− (1, 1)) /2 = (1, 2), while for offset δ = (0, 0),
there is no valid output coordinate since ((3, 5)− (0, 0))
is not a multiple of stride s = 2. We refer the readers to
Appendix A for more details.

2.1.2 Map Search

As in Algorithm 1, map search requires iterating over all
possible input coordinates for each output coordinate. A
map is generated only when the input is nonzero.

To efficiently examine whether the possible input qj + δ is
nonzero, a common implementation is to record the coor-
dinates of nonzero inputs with a hash table. The key-value
pairs are (key=input coordinates, value=input index), i.e.,
(key = pj , value = j). The hash function can simply be
flattening the coordinate of each dimension into an integer.
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Figure 2: TorchSparse aims at accelerating Sparse Convolution, which consists of four stages: mapping, gather, matmul and
scatter-accumulate. Our optimization follows two principles: 1 improve the regularity of sparse workload 2 reduce the
memory footprint. To achieve that, TorchSparse exploits adaptively batched matmul (Principle 1 , Section 4.2); quantized,
vectorized, locality-aware scatter/gather (Principle 2 , Section 4.3); and mapping kernel fusion (Principle 2 , Section 4.4).
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Figure 3: Sparse convolution (b) does not multiply each
nonzero input with all nonzero weights as conventional
convolution (a) does.

2.2 Data Orchestration and Matrix Multiplication

After maps are generated, sparse convolution will multiply
the input feature vector xin

j with corresponding weight ma-
trixWδ and accumulate to the corresponding output feature
vector xout

k , following the map {(pj , qk,Wδ)}.

The utilization of matrix-vector multiplication is rather low
on GPU. Therefore, most existing implementations follow
the gather-matmul-scatter computation flow in Algorithm 2.
First, all input feature vectors associated with the same
weight matrix are gathered and concatenated into a contigu-
ous matrix. Then, matrix-matrix multiplication between
feature matrix and weight matrix is conducted to obtain the
partial sums. Finally, these partial sums are scattered and
accumulated to the corresponding output feature vectors.

2.3 Difference from Other Tasks

vs. conventional convolution with sparsity. The sparsity
in conventional convolution comes from the ReLU activa-
tion function or weight pruning. Since there is no hard con-
straint on the output sparsity pattern, each nonzero input is
multiplied with every nonzero weight, so the nonzeros will

Algorithm 1 Map Search
Input: input coordinates P in, output coordinates P out

kernel size K, stride s
Output: mapsM
N ←∆D(K).size
M← {∅} ×N
for k, qk in enumerate(P out) do

# Traverse the neighbors of an output point.
for n, δ in enumerate(∆D(K)) do

# Calculate input coordinates.
r ← s · qk + δ
# Add new map if input exists.
if P in.contain(r) then
j ← P in.getIndex(r)
M[Wδ]←M[Wδ] ∪ {(pj , qk,Wδ)}

end if
end for

end for

Algorithm 2 Gather-MatMul-Scatter
Input: input featuresX in, weightsW , mapsM
Output: output featuresXout

Xout ← 0
# Separately perform gather-matmul-scatter for each weight.
for δ in ∆D(K) do
F ← ∅
# Gather features for wn.
for m, (pj , qk,Wδ) in enumerate(M[Wδ]) do
F [m]←X in[j]

end for
# Matrix-matrix multiplication.
F ← F ·Wδ

# Scatter partial sums toXout.
for m, (pj , qk,Wδ) in enumerate(M[Wδ]) do
Xout[qk]←Xout[qk] + F [m]

end for
end for
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Figure 4: Data movement and GEMM constitute a signifi-
cant proportion of the runtime of sparse CNNs.

dilate during the inference, i.e., P in ⊂ P out (see Figure 3a).
The existing sparse computation libraries leverage such com-
putation pattern by travelling all nonzero inputs with all
nonzero weights to accelerate the conventional convolution.
On the contrary, sparse convolution requires P in = P out,
and thus the relationship among inputs, weights and outputs
requires to be explicitly searched with mapping operations,
which makes it a hassle for previous sparse libraries.

vs. graph convolution. In graph convolution, the relation-
ship between inputs and outputs are provided in the adja-
cency matrix which stays constant across layers. Contrarily,
sparse convolution has to search maps for every downsam-
pling block. Furthermore, graph convolution shares the
same weight matrix for different neighbors, i.e. allWδ are
the same. Hence, graph convolution only needs either one
gather or one scatter of features: 1) first gather input features
associated with the same output vertex, and then multiply
them with shared weights and reduce to the output feature
vector; or 2) first multiply all input features with shared
weights, and then scatter-accumulate the partial sums to the
corresponding output feature vector. However, sparse con-
volution uses different weight matrices for different kernel
offset δ and thus needs both gather and scatter during the
computation. Consequently, existing SpMV/SpDMM sys-
tems for graph convolution acceleration (Wang et al., 2019a;
Hu et al., 2020) are not applicable to sparse convolution.

3 ANALYSIS

We systematically profile the runtime of different compo-
nents in two representative sparse CNNs: one for segmenta-
tion (Figure 4a) and one for detection (Figure 4b). Based on
observations in Figure 4, we summarize two principles for
sparse convolution optimization which lays the foundation
for our system design in Section 4.

Principle I. Improve Regularity in Computation Ma-
trix multiplication is the core computation in sparse con-
volution and takes up a large proportion of total execution
time (20%-50%). Algorithm 2 decouples the matrix multi-

plication computation from data movement so that we can
use well-optimized libraries (such as cuDNN) to calculate
Xout ←X in·Wδ . However, the computation workloads are
very non-uniform due to the irregular nature of point clouds
(detailed in Figure 12, where map sizes for different weights
can differ by an order of magnitude, and most map sizes are
small). As a result, the matrix multiplication in MinkUNet
(0.5× width) runs at 8.1 TFLOP/s on RTX 2080 Ti with
FP16 quantization, achieving only 30% device utilization.
Therefore, improving the regularity of matrix multiplication
will potentially be helpful: we boost the utilization to 44.2%
after optimization (detailed in Table 2).

Principle II. Reduce Memory Footprint Data move-
ment is the largest bottleneck in sparse CNNs, which takes
up 40%-50% of total runtime on average. This is because
scatter-gather operations are bottlenecked by GPU mem-
ory bandwidth (limited) rather than computation resources
(abundant). Worse still, the dataflow in Algorithm 2 com-
pletely separates scatter-gather operations for different ker-
nel offsets. This further ruins the possibility of any reuse
in the data movement, which will be detailed in Figure 9.
It is also noteworthy that the large mapping latency in the
CenterPoint detector (Figure 4b) also stems from memory
overhead: hashmap construction and output coordinate cal-
culation both require multiple DRAM accesses. Thus, re-
ducing memory footprint is at the heart of data movement
and mapping optimization.

4 SYSTEM DESIGN AND OPTIMIZATION

This section unfolds our TorchSparse as follows: Section 4.1
provides an overview and API design for TorchSparse, Sec-
tion 4.2 introduces improvements on matrix multiplication
operations, Section 4.3 elaborates the optimizations for data
movement operations (scatter/gather), and Section 4.4 ana-
lyzes the opportunities to speed up mapping operations.

4.1 System Overview

Figure 5 provides an overview of our TorchSparse. At the
top level, users define their sparse CNNs using TorchSparse
APIs, which have minimal differences with native PyTorch
APIs. Also, TorchSparse does not require users to add ad-
ditional fields such as indice key and spatial shape in
SpConv (Yan et al., 2018), and coordinate manager in
MinkowskiEngine (Choy et al., 2019) when defining mod-
ules and tensors. TorchSparse converts the high-level mod-
ules to primitive operations: e.g., Conv3d is decomposed to
output construction, mapping operations and gather-matmul-
scatter. For each part, Python APIs interact with backend
CUDA implementations via pybind. Note that TorchSparse
also provides support for CPU inference and multi-GPU
training, but this paper will focus on the GPU inference.
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import torchsparse.nn as spnn

class SparseConvBlock(nn.Sequential):

    def __init__(self,

                 in_channels: int,

                 out_channels: int,

                 kernel_size: Union[int, list, tuple],

                 stride: Union[int, list, tuple] = 1,

                 dilation: int = 1) -> None:

        super().__init__(

            spnn.Conv3d(in_channels,

                        out_channels,

                        kernel_size,

                        stride=stride,

                        dilation=dilation),

            spnn.BatchNorm(out_channels),

            spnn.ReLU(True)

        )

import torch.nn as nn

class ConvBlock(nn.Sequential):

    def __init__(self,

                 in_channels: int,

                 out_channels: int,

                 kernel_size: Union[int, list, tuple],

                 stride: Union[int, list, tuple] = 1,

                 dilation: int = 1) -> None:

        super().__init__(

            nn.Conv2d(in_channels,

                        out_channels,

                        kernel_size,

                        stride=stride,

                        dilation=dilation),

            nn.BatchNorm2d(out_channels),

            nn.ReLU(True)

        )

TorchSparse APIs are very close to PyTorch native APIs. 

SparseConvNets: MinkUNet, CenterPoint, …

TorchSparse APIs: 

spnn.Conv3d, spF.conv3d…

Output Coord. 
Construction (4.4) Map Search (4.4)

PyTorch CUDA Extension

Fused Locality-Aware

Scatter/Gather (4.3)

Adaptively 

Grouped MatMul (4.2)

Figure 5: System overview for TorchSparse: our TorchSparse provides handy Python APIs similar to PyTorch and applies
low-level optimizations to data movement, matrix multiplication and mapping operations in sparse convolution.
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Figure 6: Different matrix multiplication grouping strate-
gies: (a) dense computation suffers from large FLOPs over-
head; (b) separate matrix multiplication suffers from low de-
vice utilization and excessive kernel calls; (c) fixed grouping
trades FLOPs for regularity; (d) adaptive grouping searches
for the best balance point.

4.2 Matrix Multiplication Optimization

Matrix multiplication is the core computation in sparse con-
volution. Due to the irregularity of point clouds, existing
implementations rely on cuDNN to perform many small ma-
trix multiplications on different weights (Figure 6b), which
usually do not saturate the utilization of GPUs. In order to
increase the utilization, we propose to trade computation for
regularity (Principle I) by grouping matrix multiplication for
different weights together. We find it helpful to introduce
redundant computation but group more computation in a
single kernel. In Figure 12, we collect the real workload for
MinkUNet (Choy et al., 2019) on SemanticKITTI (Behley
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Figure 7: Trading FLOPs for computation regularity via
batched matrix multiplication brings 1.5× speedup.

et al., 2019) and analyze the efficiency of matrix multiplica-
tion in the first sparse convolution layer with respect to the
group size. It turns out that batched matrix multiplication
can be significantly faster than sequentially performing the
computation along the batch dimension, thanks to the better
regularity. This motivates us to explore the opportunity of
grouping in the matrix multiplication computation.

4.2.1 Symmetric Grouping

With sparse workloads, the map sizes for different weights
within one sparse convolution layer are usually different.
Fortunately, for sparse convolutions with odd kernel size and
stride of 1, the maps corresponding to kernel offset (a, b, c)
will always have the same size as the maps corresponding to
the symmetric kernel offset (−a,−b,−c). For a map entry
(pj , qk,Wa,b,c), we have qk = pj + (a, b, c). Then, pj =
qk+(−a,−b,−c), which implies that (qk,pj ,W−a,−b,−c)
is also a valid map entry. As such, we can establish an one-
to-one correspondence between maps for weights ±(a, b, c).
Therefore, we are able to group the workload for symmetric
kernel offsets together and naturally have a batch size of 2.
Note that the workload corresponding to the kernel offset
(0, 0, 0) is processed separately since it does not require
any explicit data movement. From Figure 7, the symmetric
grouping (13 groups) can already be up to 1.2× faster than
the separate matrix multiplication.
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4.2.2 Fixed Grouping

Though symmetric grouping works well for sparse convo-
lutions with the stride of 1, it falls short in generalizing to
downsampling layers. Also, it cannot push the batch size to
> 2, which means that we still have a large gap towards the
best GPU utilization in Figure 7. Nevertheless, we find that
clear pattern exists in the map size statistics (Figure 12): for
submanifold layers, the maps corresponding toW0 toW3

tend to have similar sizes and the rest of the weights other
than the middle one have similar sizes; for downsampling
layers, the maps for all offsets have similar sizes. Conse-
quently, we can batch the computation into three groups
accordingly. Within each group, we pad all features to the
maximum size (Figure 6c). Fixed grouping generally works
well when all features within the same group have similar
sizes (Figure 6c left), and this usually happens in downsam-
pling layers. For submanifold layers (Figure 6c right), the
padding overhead can sometimes be large despite the better
regularity, resulting in wasted computation.

4.2.3 Adaptive Grouping

The major drawback of fixed grouping is that it does not
adapt to individual samples. This can be problematic since
workload size distributions can vary greatly across different
datasets (Figure 12). It is also very labor-intensive to design
different grouping strategies for different layers, different
networks on a diverse set of datasets and hardware. To this
end, we design an adaptive grouping algorithm (Figure 6d)
that automatically determines the input-adaptive grouping
strategy for a given layer on arbitrary workload.

The adaptive grouping algorithm builds upon two auto-tuned
parameters ε and S, where ε indicates our tolerance of redun-
dant computation, and S is the workload threshold. Given
ε, we scan over sizes of all maps in the current workload
for W0 to WK−1 (where K is the kernel volume) and dy-
namically maintain two pointers indicating the start and end
of the current group. We initiate a new group whenever the
redundant computation ratio (1 − Theoretical FLOPs

Actual FLOPs ) exceeds
ε. Then, given S, we inspect the maximum workload size
within each group. Each group performs bmm if the workload
size is smaller than S and performs mm otherwise. This is
because bmm can improve device utilization for small work-
loads but has little benefit for large workloads. We refer the
readers to Appendix B for more details of this algorithm.
Note that even if ε and S are fixed, the generated strategy it-
self is still input-adaptive. Since different input point clouds
have different map sizes, even the same ε can potentially
generate different group partition strategies for different
samples. The (ε, S) parameter space is simple but diverse
enough to cover dense computation (ε = 1; S = +∞), sep-
arate computation (S = 0) as well as symmetric grouping
(ε = 0;S = +∞) as its special cases.

c0 c1 … c30 c31 c32 c33 … c62 c63 … … c255

Warp #0 Warp #1 Warp #7
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(a) FP32, Scalar Scatter-Gather; 4B/channel (c0-c255), 128B/warp

(b) FP16, Vectorized Scatter-Gather; 2B/channel (c0-c255), 128B/warp

Figure 8: TorchSparse applies vectorized and quantized
scatter-gather to greatly reduce the data movement latency.
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Figure 9: TorchSparse proposes cache-friendly locality-
aware and memory access pattern. In contrary, baseline
implementation (a) cannot exploit cache reuse due to unique-
ness in input/output indices for each weight.

For a given sparse CNN, we determine (ε, S) for each layer
on the target dataset and hardware platform via exhaustive
grid search on a small subset (usually 100 samples) of the
training set. We formalize this process in Appendix B. The
search is inference-only. It explores a space of around 1,000
configurations and requires less than 10 minutes of search
time on a desktop GPU. The strategy derived on the small
subset can be directly applied and does not require any
parameter optimization during the inference time.

4.3 Data Movement Optimization

From Section 3, data movement usually takes up 40-50% of
the total runtime. Thus, optimizing data movement will be
of high priority as well (Principle II). Intuitively, it is most
effective to reduce data movement cost by reducing the total
amount of DRAM access and exploiting the data reuse.

4.3.1 Quantized and Vectorized Memory Access

FP16 quantization brings 2× theoretical DRAM access sav-
ing compared with the FP32 baseline. However, as in Fig-
ure 8, this reduction cannot be translated into real speedup
without vectorized scatter/gather.
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NVIDIA GPUs group memory access requests into trans-
actions, whose largest size is 128 bytes. Considering the
typical memory access pattern in scatter/gather, where a
warp (32 threads) issues contiguous FP32 (4 bytes) memory
access instructions simultaneously, the 128-byte transaction
is fully utilized. However, when each thread in the warp
issues an FP16 memory request, the memory transaction
has only 64/128=50% utilization, and the total number of
memory transactions are essentially unchanged. As a result,
we observe far smaller speedup (1.3×) compared to the the-
oretical value (2×) on scatter/gather if scalar scatter/gather
(Figure 8a) is performed.

Contrarily, vectorized scatter-gather Figure 8b doubles the
workload of each thread, making the total work of each warp
still 128 bytes, equivalent to a full FP32 memory transac-
tion. Meanwhile, the total number of memory transactions
is halved while the work for each memory transaction is
unchanged, and we observe 1.9× speedup over FP32 data
movement on various GPU platforms. This closely aligns
with the theoretical reduction in DRAM access.

Further quantizing the features to INT8 offers diminishing
return, as the multi-way reduction in the scatter operation
requires more than 8-bit for the final result. In this case, all
scatter operations are still in 16 bits since CUDA requires
aligned memory access. Thus, scattering (which takes 60%
of the data movement time) cannot not accelerated with the
INT8 quantization, leading to limited overall speedup.

4.3.2 Fused and Locality-Aware Memory Access

Despite the limitation of aggressive feature quantization,
it is still possible to achieve faster scatter/gather by ex-
ploiting locality. Intuitively, for a sparse convolution layer,
the total amount of gather read and scatter write is N1 =
|M|(Cin+Cout), whereM is the map for this layer (defined
in Section 2.1), and Cin and Cout correspond to input and
output channel numbers. However, the total feature size
of this layer is N2 = NinCin + NoutCout. Empirically, the
feature of each point is repetitively accessed for at least 4
times (N1 ≥ 4N2). Based on this, we can ideally have 1.6×
more DRAM access saving for scatter/gather (the amount
of gather write and scatter read is also N1 and cannot be
saved).

As shown in Algorithm 2 and Figure 9a, the current imple-
mentation completely separates gather/scatter for different
weights. When we perform gather operation forWk+1, the
GPU cache is filled with scatter buffer features forWk as
long as the GPU cache size is much smaller than N1 (typ-
ically > 40MB, much larger than the 5.5MB L2 cache of
NVIDIA RTX 2080 Ti). Intuitively, for gather operation on
Wk+1, we hope that the cache is filled with gather buffer
features fromWk. This suggests us to first fuse all gather
operations before matrix multiplication, and fuse all scatter
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Figure 10: TorchSparse reduces mapping DRAM access
and improves mapping latency via kernel fusion.

operations afterwards. As such, the GPU cache will always
hold data from the same type of buffer.

Moreover, the memory access order matters. In the weight-
stationary order (Figure 9a), all map entries for weightWk

are unique, so there is no chance of feature reuse, and each
gather/scatter leads to a cache miss. As in Figure 9b, we
instead take a locality-aware memory access order. We
gather the input features in the input-stationary order and
scatter the partial sums in the output-stationary order.

Without loss of generality, we will focus on the implementa-
tion of input-stationary gather. We first maintain a neighbor
set Nj for each input point pj : i.e., for the ith map entry
(pj , qk,Wn), we insert (Wn, i) into Nj . Then, we iterate
over every input point pj , fetch its feature vectorX in

j into
the register, and write it to the corresponding DRAM lo-
cation

∑n−1
k=0 |M[Wk]| + i for each (Wn, i) ∈ Nj . Here,

M[Wk] is the map for weight Wk. Note that each X in
j is

read from DRAM only once and held in the register. Hence,
this algorithm achieves the optimal reuse for gather. Similar
technique can be applied to scatter, where we read neighbors’
partial sums for each output point from DRAM, perform
reduction in the register, and write the result back only once.
This optimization alone leads to 1.3-1.4× speedup in data
movement on real-world point cloud datasets.

4.4 Mapping Optimization

From Figure 4, mapping operations in our baseline imple-
mentation take up a significant amount of time (15%) in
detectors on the Waymo (Sun et al., 2020) dataset. It is
important to reduce the mapping overhead in sparse CNNs.

We first choose the map search strategy for each layer from
[grid, hashmap] in a similar manner to the adaptive group-
ing. Here, grid corresponds to a naive collision-free grid-
based hashmap: it takes larger memory space, but hashmap
construction/query requires exactly one DRAM access per-
entry, which is much smaller than conventional hashmaps.
We then perform kernel fusion (Figure 10) on output coor-
dinates computation for downsampling. The downsample
operation applies a sliding window around each point. It 1

calculates candidate activated points with broadcast add,
2 performs modular check, 3 performs boundary check
and generates a mask on whether each point is kept, 4 con-
verts the remaining candidate point coordinates to 1D values,
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Figure 11: TorchSparse consistently outperforms state-of-the-art inference engines in both detection and segmentation
benchmarks and achieves up to 1.5-1.6× geomean speedup, 2.3× single model speedup over MinkowskiEngine and SpConv.

and 5 performs unique operation to keep final output coor-
dinates (detailed in Appendix A). There are DRAM accesses
between every two of the five stages, making downsampling
kernels memory-bounded. We therefore fuse stages 1 to
4 into a single kernel and use registers to store intermedi-
ate results, which eliminates all intermediate DRAM write.
For the fused kernel, we further perform control logic sim-
plification, full loop unrolling and utilize the symmetry of
submanifold maps. Overall, the mapping operations are
accelerated by 4.6× on detection tasks with our optimiza-
tions.

5 EVALUATION

5.1 Setup

TorchSparse is implemented in CUDA and provides easy-
to-use PyTorch-like interfaces (described in Section 4.1).
We build TorchSparse based on PyTorch 1.9.1 with CUDA
10.2/11.1 and cuDNN 7.6.5. Our system is evaluated against
a baseline FP32 design without optimizations in Section 4
and the latest versions of two state-of-the-art sparse convo-
lution libraries MinkowskiEngine v0.5.4 (Choy et al., 2019)
and SpConv v1.2.1 (Yan et al., 2018) on three generations
of NVIDIA GPUs: GTX 1080Ti, RTX 2080Ti and RTX
3090. Necessary changes are made to MinkowskiEngine to
correctly support downsample operations in detectors and
to SpConv to avoid OOM in large-scale scenes.

All systems are evaluated on seven top-performing sparse
CNNs on large-scale datasets: MinkUNet (Choy et al., 2019)
(0.5×/1× width) on SemanticKITTI (Behley et al., 2019),
MinkUNet (1/3 frames) on nuScenes-LiDARSeg (Caesar
et al., 2020), CenterPoint (Yin et al., 2021) (10 frames) on
nuScenes detection and CenterPoint (1/3 frames) on Waymo
Open Dataset (Sun et al., 2020). We report the normalized
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Figure 12: Grouping strategy on different datasets. Maps
on nuScenes are much smaller than on SemanticKITTI for
MinkUNet. Thus, to fully utilize GPU, the grouping strategy
is more aggressive on nuScenes (8 groups vs. 10 groups).

FPS for all systems (with TorchSparse to be 1).

5.2 Evaluation Results

Our TorchSparse achieves the best performance compared
with the baseline design, MinkowskiEngine and SpConv.

From Figure 11, TorchSparse achieves up to 2.16× speedup
on segmentation models and 1.6-2× speedup on detection
models over MinkowskiEngine on RTX 3090. We achieve
a smaller speedup for the 1-frame MinkUNet on nuScenes-
LiDARSeg because MinkowskiEngine applies specialized
optimizations to small models by using the fetch-on-demand
dataflow (Lin et al., 2021) instead of the gather-matmul-
scatter dataflow.

TorchSparse also demonstrates a 1.2× faster inference speed
compared with the FP16 version of SpConv for detectors
on RTX3090 thanks to our fused and locality-aware ac-
cess pattern and almost perfect speedup from vectorized
data movement. Note that we report end-to-end speedup in
Figure 11. However, 10% of total total runtime in Center-
Point (Yin et al., 2021) is not related to point cloud computa-
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tion (image convolution and non-maximum suppression, as
in Figure 4). Therefore, our speedup ratio on sparse convo-
lution is 10% more for CenterPoint. The performance gain
over SpConv (FP16) is even larger on segmentation models
on various hardware platforms thanks to the effectiveness of
adaptively batched matrix multiplication, which will be dis-
cussed in Section 6.1. GPUs are usually more under-utilized
for segmentation models as they usually have smaller work-
load compared with detectors, making it necessary to apply
batching strategies to improve the device utilization.

TorchSparse achieves consistent speedup over other systems
on GTX 1080Ti, which has no FP16 tensor cores. Compared
with the baseline design, our TorchSparse still achieves a
1.5× speedup, only 11% less than the speedup we achieved
on RTX 2080Ti with tensor cores. This validates that the
native tensor-core speedup only constitutes a very minor
proportion of our performance gain.

Our TorchSparse runs MinkUNet (1.0× on SemanticKITTI)
at 36, 26 and 13 FPS on RTX 3090, RTX 2080Ti, GTX
1080Ti, respectively, all satisfying the real-time requirement
(≥ 10 FPS). For the 3-frame model on nuScenes-LiDARSeg,
TorchSparse achieves 45, 40 and 25 FPS throughput on the
three devices, at least 2× faster than the LiDAR frequency.
Even for the heaviest 3-frame CenterPoint model on Waymo,
our TorchSparse is still able to achieve the real-time infer-
ence on GTX 1080Ti. As such, our system paves the way
for real-time LiDAR perception on self-driving cars.

6 ABLATION STUDY

6.1 Matrix Multiplication Optimizations

We first examine the performance of different grouping
strategies on SemanticKITTI with MinkUNet (0.5×) and
on nuScenes with MinkUNet (3 frames). From Figure 6,
our adaptive grouping strategy outperforms all handcrafted,
fixed strategy and achieves 1.4-1.5× over no grouping base-
line. Table 2 also suggests that manually-designed strat-
egy cannot generalize to all datasets: fixed 3-batch group-
ing achieves large speedup (1.5×) on nuScenes, but is
13% slower than the separate computation baseline on Se-
manticKITTI. Note that although this strategy has the best
device utilization (largest TFLOP/s) on nuScenes, it does
not bring greater latency reduction than adaptive grouping
due to much more extra computation, indicating the impor-
tance of ε in our adaptive grouping algorithm. We also show
the effectiveness of grouping strategy specialization for dif-
ferent datasets, model and hardware in Table 1. In Table 1a,
we found that the same model (1-frame MinkUNet) on the
same hardware platform benefits more from the dataset-
specialized strategy. This is because map size distributions
(which decides the workload of matrix multiplication) sig-
nificantly differ between SemanticKITTI and nuScenes, as

Specialization
for Different

Datasets

Optimized for

SemanticKITTI nuScenes

Execute
on

SemanticKITTI 10.11 10.87

nuScenes 5.30 4.67

(a) Specialization for Datasets (MinkUNet, 2080Ti)

Specialization
for Different

Models

Optimized for

MinkUNet (1.0×) MinkUNet (0.5×)

Execute
on

MinkUNet (1.0×) 10.11 10.70

MinkUNet (0.5×) 5.37 4.72

(b) Specialization for Model (SemanticKITTI, 2080Ti)

Specialization
for Different

Hardware

Optimized for

RTX2080Ti GTX1080Ti

Execute
on

RTX2080Ti 4.67 4.80

GTX1080Ti 14.95 14.01

(c) Specialization for Hardware (nuScenes, MinkUNet)

Table 1: Specializing adaptive batching strategies for differ-
ent datasets, models and hardware platforms helps improve
efficiency (TFLOP/s) by up to 13.5%.

Grouping Method MatMul speedup (SK) MatMul Speedup (NS)

Separate 8.1 TFLOP/s (1.00×) 10.4 TFLOP/s (1.00×)
Symmetric 8.2 TFLOP/s (1.02×) 14.6 TFLOP/s (1.39×)

Fixed 8.7 TFLOP/s (0.87×) 21.1 TFLOP/s (1.50×)
Adaptive 11.9 TFLOP/s (1.39×) 16.9 TFLOP/s (1.54×)

Table 2: Ablation analysis on matrix multiplication: adap-
tive batching consistently outperforms all other strategies
in latency and brings about 1.4×-1.5× speedup for matmul
(SK=SemanticKITTI, NS=nuScenes). As we trade FLOPs
for regularity, TFLOP/s and speedup are non-proportional.

shown in Figure 12. The maps on nuScenes are much
smaller than those on SemanticKITTI. As a result, if we
directly transfer SemanticKITTI strategy to nuScenes, the
groups will not be large enough to fully utilize hardware
resources. On the other hand, if the nuScenes strategy is
transferred to SemanticKITTI, the efficiency will be bottle-
necked by computation overhead. We notice similar effect
for model and hardware specialization in Table 1b and Ta-
ble 1c, where specialized strategies always outperform the
transferred ones.

6.2 Data Movement Optimizations

We then perform ablation analysis on MinkUNet (Choy
et al., 2019) (1.0×) on the SemanticKITTI dataset (Behley
et al., 2019). As in Table 3, naively quantizing features to
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FP16 Vec. Fused Loc.-Aware Speedup (G) Speedup (S) Speedup (SG)

7 7 7 7 1.00 1.00 1.00
3 7 7 7 1.17 1.48 1.32
3 3 7 7 1.91 1.95 1.93
3 3 3 7 1.91 2.12 2.02
3 3 3 3 2.86 2.61 2.72

Table 3: Speedup breakdown of different optimizations to
reduce data movement. Feature quantization, vectorized
memory access, and fused and locality-aware access bring
1.3×, 1.5× and 1.4× speedup, respectively. Here, G and S
denote gather and scatter.

Baseline
+ Grid HM.

+ Fused Kernel
+ Simplify Ctl.

+ Symmetry
Output Construction
Map Search

1.6×
1.5×

1.8×
1.1×

Figure 13: Speedup breakdown of mapping optimizations.
Grid-based hashmap, fused kernel, simplified control logic
and symmetry bring 1.6×, 1.5×, 1.8× and 1.1× measured
speedup, respectively.

16-bit will not provide significant speedup for scatter/gather:
especially for gather, the speedup ratio is only 1.17×, far
less than the theoretical value (2×). Instead, quantized and
vectorized scatter/gather improves the latency of scatter-
gather by 1.93×, which closely matches the DRAM ac-
cess reduction and verifies our analysis in Section 4.3 on
memory transactions. We further observe that fusing gath-
er/scatter itself will not provide substantial speedup, as the
weight-stationary access pattern cannot provide good cache
locality due to the uniqueness of maps for each weight.
However, when combined with locality-aware access, we
achieve 2.86× speedup on gathering, 2.61× speedup on
scattering and 2.72× overall speedup against FP32. This
demonstrates the fact that all techniques in Section 4.3 are
crucial in improving the efficiency of data movement.

6.3 Mapping Optimizations

We finally present analysis on optimizing mapping oper-
ations in 3-frame CenterPoint (Yin et al., 2021) detector
on Waymo (Sun et al., 2020). Grid-based map search is
2.7× faster than a general hashmap-based solution thanks
to its no-collision property, resulting in a 1.6× end-to-end
speedup for mapping. Fusing four small kernels accelerates
output construction by 2.1× and brings 1.5× further end-to-
end mapping speedup. Finally, simplifying the control logic,
loop unrolling and utilizing the symmetry of maps substan-
tially accelerates map search by another 4× and pushes the
final end-to-end mapping speedup to 4.6×.

7 RELATED WORK

Deep Learning on Point Clouds. Early methods (Chang
et al., 2015; Qi et al., 2016; Cicek et al., 2016) first con-
vert point clouds to the dense volumetric representation and
apply dense CNNs to extract features. Another line of re-
search (Qi et al., 2017a;b; Li et al., 2018; Wu et al., 2019;
Thomas et al., 2019; Wang et al., 2019b) directly performs
convolution on the k-nearest neighbor or spherical nearest
neighbor of each point. Both streams of methods struggle
to scale up to large scenes due to large or irregular memory
footprint (Liu et al., 2019; 2021). Recent state-of-the-art
deep learning methods on point cloud segmentation / de-
tection (Graham et al., 2018; Choy et al., 2019; Tang et al.,
2020; Shi et al., 2020; 2021; Yin et al., 2021) are usually
based on sparse convolution, which is empirically proven
to be able to scale up to large scenes and is the target for
acceleration in this paper.

Point Cloud Inference Engines. Researchers have exten-
sively developed efficient inference engines for sparse con-
volution inference. SpConv (Yan et al., 2018) proposes grid-
based map search and the gather-matmul-scatter dataflow.
SparseConvNet (Graham et al., 2018) proposes hashmap-
based map search and is later significantly improved (in
latency) by MinkowskiEngine, which also introduces a new
fetch-on-demand dataflow that excels at small workloads
and allows generalized sparse convolution on >3D point
clouds and on arbitrary coordinates.

8 CONCLUSION

We present TorchSparse, an open-source inference engine
for efficient point cloud neural networks. Guided by two
general principles: trade computation for regularity and re-
duce memory footprint, we optimize matrix multiplication,
data movement and mapping operations in sparse convolu-
tions, achieving up to 1.5×, 2.7× and 4.6× speedup on these
three components, and up to 1.5-1.6× end-to-end speedup
over previous state-of-the-art point cloud inference engines
on both segmentation and detection tasks. We hope that
our in-depth analysis on the efficiency bottlenecks and opti-
mization recipes for sparse convolution can inspire future
research on point cloud inference engine design.
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A OUTPUT COORDINATES CALCULATION

Here, we illustrate the output coordinates calculation algo-
rithm for s > 1 in sparse convolution. We apply a sliding
window on each input point and check whether each can-
didate output point within the window passes modular and
boundary check. If both checks are passed, we add the can-
didate output point to P out. We finally filter out duplicate
coordinates in P out.

Algorithm 3 Output Coordinates Calculation
Input: kernel size K, stride s, input coordinates P in,

output coordinates boundary b
Output: output coordinatesP out

if s = 1 then
P out ← P in

else
P out ← ∅
for p in P in do

# Traverse the neighbors of an input point.
for δ in ∆D(K) do

# Calculate the candidate coordinates.
u← p− δ
# Add output if it passes modular and boundary check.
if u % s == 0 and u < s · b then
P out ← P out ∪ {u/s}

end if
end for

end for
# Filter out duplicate coordinates.
P out ← Unique(P out)

end if

B ADAPTIVE GROUPING ALGORITHM

Here, we provide detailed illustration for the adaptive group-
ing algorithm. The algorithm is divided into two parts:
grouped matrix multiplication (Algorithm 4) and adaptive
group search (Algorithm 5).

B.1 Group Matrix Multiplication

We describe the process of applying the adaptive grouping
strategies for each layer in Algorithm 4, which is performed
via two steps. First, we maintain two pointers to track the
start and the end of the current group. Once 1−nmin/nmax

updated by the end pointer exceeds the tolerance of redun-
dant computation ε, we return the working group to the
groups list and move pointers to start a new group. Sec-
ond, for each group, we determine if batched matmul is
performed on it based on the value of S.

B.2 Adaptive Strategy Search

For each layer, we search for a specific configuration to con-
duct adaptive grouping (i.e. auto-tune ε and S). The tuning

Algorithm 4 Grouped Matrix Multiplication
Input: input featuresX in, weightsW , mapsM,

redundant computation tolerance ε,
mm/bmm threshold S

Output: output featuresXout

G← ∅
i← 0
# Traverse each weight index with unique number of inputs.
while i < range(b∆D(K).size/2c) do
nmin ← 0; nmax ← len(M[Wi])
# Always push the first index to the current group.
g ← {i}; i← i+ 1
for j in range(i, b∆D(K).size/2c) do
n← len(M[Wj ])
nmin ← min{n, nmin}, nmax ← max{n, nmax}
# Push the index to the group if the ratio no larger than ε.
if 1− nmin/nmax ≤ ε then
g ← g ∪ {j}

else
# Otherwise return and start a new group.
break

end if
end for
# Push the returned group to the groups list.
G← G ∪ {g}

end while
for g inG do
nmax ← max{len(M[Wi]) for i in g}
# Pad inputs and apply bmm when workload smaller than S.
if nmax < S then

gather input feature matrices Fi with X in and M[Wi]
for i ∈ g; pad zeros to each Fi to become length nmax;
perform batched matrix multiplication between Fi∈g and
Wi∈g and then scatter results to correspondingXout

else
# Otherwise apply mm.
perform Algorithm 2 in main paper withX in

i for i ∈ g to
getXout

end if
end for
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Figure 14: TorchSparse evaluation results in absolute values.

algorithm is shown in Algorithm 5, where we enumerate
ε, S in a predefined search space (usually < 1000 configura-
tions), use Algorithm 4 to perform the matrix multiplication
for the target layer, and select the ε, S pair which leads to
the smallest average latency.

Algorithm 5 Adaptive Group Search
Input: sampled inputs subsetD, weightsW , mapsM,

redundant computation tolerance search space Sa,
mm/bmm threshold search space Sb

Output: selected redundant computation tolerance ε∗,
mm/bmm threshold S∗

f ← cost function to compute elapsed time on hardware
cmin ← 0
for ε in Sa do

for S in Sb do
c← 0
forX in inD do
c← c+f(run Algorithm 4 withX in,W ,M, ε, S)

end for
# Update selected config to {ε, S} for smaller latency.
if cmin = 0 or c < cmin then
cmin ← c
ε∗ ← ε, S∗ ← S

end if
end for

end for

C RESULTS DETAIL

We show TorchSparse evaluation results in absolute FPS in
Figure 14. TorchSparse is able to run all models in real-time
(> 10 FPS) on all hardware platforms.
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